Adaptive Load Balancing Techniques for Improved Cloud Service Performance

Authors

  • Sangle Harshal Sunil Department of Computer Science & Engineering, Bhabha University, Bhopal, Madhya Pradesh, India Author
  • Jeetendra Singh Yadav Department of Computer Science & Engineering, Bhabha University, Bhopal, Madhya Pradesh, India Author

Keywords:

Cloud Computing, Load Balancing, Adaptive Algorithms, Resource Optimization, Machine Learning, Virtualization, Service-Level Agreement (SLA), Cloud Performance

Abstract

Cloud computing has emerged as a fundamental platform for delivering scalable, flexible, and cost-effective computing services. However, the rapid growth of users and heterogeneous workloads often leads to challenges such as uneven resource utilization, performance degradation, and service-level agreement (SLA) violations. Load balancing plays a crucial role in overcoming these issues by efficiently distributing incoming workloads across multiple servers to optimize resource usage, minimize response time, and ensure system reliability. This paper focuses on adaptive load balancing techniques that dynamically adjust to fluctuating workloads and varying system conditions, unlike traditional static approaches. By leveraging machine learning algorithms, heuristic models, and feedback-driven optimization strategies, adaptive techniques enable real-time decision-making for efficient task allocation. The study highlights key methods, including predictive workload analysis, adaptive VM migration, and hybrid balancing algorithms, that improve system throughput, reduce latency, and enhance overall cloud service performance. The findings demonstrate that adaptive load balancing is essential for achieving high availability, fault tolerance, and sustainable cloud operations, making it a promising approach for next-generation cloud infrastructures.

Downloads

Download data is not yet available.

References

F. Perrone, L. Lemmi, C. Puliafito, A. Virdis and E. Mingozzi, "A Computing-Aware Framework for Dynamic Traffic Steering in the Edge-Cloud Computing Continuum," 2025 34th International Conference on Computer Communications and Networks (ICCCN), Tokyo, Japan, 2025, pp. 1-9, doi: 10.1109/ICCCN65249.2025.11133863.

A. B. M. B. Alam, F. Khandaker and Y. S. Palh, "Improving QoS for VM Allocation in Multi-Cloud Environment," 2025 IEEE 49th Annual Computers, Software, and Applications Conference (COMPSAC), Toronto, ON, Canada, 2025, pp. 2164-2169, doi: 10.1109/COMPSAC65507.2025.00304.

Z. Liang et al., "Autolink: An Adaptive High-Throughput Streaming Processing System for Distributed Environment," 2025 IEEE International Conference on Joint Cloud Computing (JCC), Tucson, AZ, USA, 2025, pp. 1-8, doi: 10.1109/JCC67032.2025.00005.

Q. Shi, H. Huang, X. Li, C. Li, W. Cao and L. Liu, "Adaptive Network Load Balancing at the End Host for Traffic Bursts in Data Centers," 2024 IEEE International Conference on High Performance Computing and Communications (HPCC), Wuhan, China, 2024, pp. 416-423, doi: 10.1109/HPCC64274.2024.00063.

L. Chen, J. Li, Y. Deng, H. Feng and Q. Ke, "A Deep Learning-Based Thermal Prediction Approach for Energy Management in Cloud Data Centers," 2024 IEEE International Conference on High Performance Computing and Communications (HPCC), Wuhan, China, 2024, pp. 337-344, doi: 10.1109/HPCC64274.2024.00054

Alakeel, A. M., & Arabia, S. (2010). A Guide to Dynamic Load Balancing in Distributed Computer Systems. http://paper.ijcsns.org/07_book/201006/20100619.pdf

Alankar, B., Sharma, G., Kaur, H., Valverde, R., & Chang, V. (2020). Experimental Setup for Investigating the Efficient Load Balancing Algorithms on Virtual Cloud. Sensors, 20(24), 7342. https://doi.org/10.3390/s20247342

Anselmi, J. (2024). Asynchronous Load Balancing and Auto-Scaling: Mean-Field Limit and Optimal Design. IEEE/ACM Transactions on Networking, 32(4), 2960. https://doi.org/10.1109/tnet.2024.3368130

Arora, P., & Dixit, A. (2020). An elephant herd grey wolf optimization (EHGWO) algorithm for load balancing in cloud. International Journal of Pervasive Computing and Communications, 16(3), 259. https://doi.org/10.1108/ijpcc-09-2019-0070

Bala, A., & Chana, I. (2016). Prediction-based proactive load balancing approach through VM migration. Engineering With Computers, 32(4), 581. https://doi.org/10.1007/s00366-016-0434-5

Botygin, I., Попов, В. Н., & Frolov, S. G. (2017). Simulation model of load balancing in distributed computing systems. IOP Conference Series Materials Science and Engineering, 177, 12017. https://doi.org/10.1088/1757-899x/177/1/012017

Doukha, R., & Ez-Zahout, A. (2025). Enhanced Virtual Machine Resource Optimization in Cloud Computing Using Real-Time Monitoring and Predictive Modeling. International Journal of Advanced Computer Science and Applications, 16(2). https://doi.org/10.14569/ijacsa.2025.0160267

Durai, K. N., Subha, R., & Haldorai, A. (2022). Hybrid Invasive Weed Improved Grasshopper Optimization Algorithm for Cloud Load Balancing. Intelligent Automation & Soft Computing, 34(1), 467. https://doi.org/10.32604/iasc.2022.026020

Grosof, I., Scully, Z., & Harchol‐Balter, M. (2019). Load Balancing Guardrails. 9. https://doi.org/10.1145/3309697.3331514

Gundla, N. K. (2024). Building Castles in the Cloud: Architecting Resilient and Scalable Infrastructure. International Journal of Computer Trends and Technology, 72(9), 77. https://doi.org/10.14445/22312803/ijctt-v72i9p113

Jodayree, M., Abaza, M., & Tan, Q. (2019). A Predictive Workload Balancing Algorithm in Cloud Services. Procedia Computer Science, 159, 902. https://doi.org/10.1016/j.procs.2019.09.250

Joloudari, J. H., Mojrian, S., Saadatfar, H., Nodehi, I., Fazl, F., shirkharkolaie, S. K., Alizadehsani, R., Kabir, H. M. D., Tan, R.-S., & Acharya, U. R. (2022). The state-of-the-art review on resource allocation problem using artificial intelligence methods on various computing paradigms. https://doi.org/10.48550/ARXIV.2203.12315

Khan, S., Nazir, B., Khan, I. A., Shamshirband, S., & Chronopoulos, A. T. (2017). Load balancing in grid computing: Taxonomy, trends and opportunities. Journal of Network and Computer Applications, 88, 99. https://doi.org/10.1016/j.jnca.2017.02.013

Kim, T. Y., & Cho, S.-B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72. https://doi.org/10.1016/j.energy.2019.05.230

Kumar, J., Goomer, R., & Singh, A. K. (2018). Long Short Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model For Cloud Datacenters. Procedia Computer Science, 125, 676. https://doi.org/10.1016/j.procs.2017.12.087

Lara-Benítez, P., Carranza-García, M., & Riquelme, J. C. (2020). An Experimental Review on Deep Learning Architectures for Time Series Forecasting [Review of An Experimental Review on Deep Learning Architectures for Time Series Forecasting]. International Journal of Neural Systems, 31(3), 2130001. World Scientific. https://doi.org/10.1142/s0129065721300011

Latchoumi, T. P., & Parthiban, L. (2021). Quasi Oppositional Dragonfly Algorithm for Load Balancing in Cloud Computing Environment. Wireless Personal Communications, 122(3), 2639. https://doi.org/10.1007/s11277-021-09022-w

Lukong, T. K., Tanyu, D. N., Nkongtchou, Y., Tatiétsé, T. T., & Schulz, D. (2025). A Spatial Long-Term Load Forecast Using a Multiple Delineated Machine Learning Approach. Energies, 18(10), 2484. https://doi.org/10.3390/en18102484

Marella, S. T., & Gunasekhar, T. (2020). An Empirical Survey on Load Balancing: A Nature-Inspired Approach. In IntechOpen eBooks. IntechOpen. https://doi.org/10.5772/intechopen.87002

Membrey, P., Hows, D., & Plugge, E. (2012). Load Balancing in the Cloud. In Apress eBooks (p. 211). https://doi.org/10.1007/978-1-4302-3681-8_13

Menon, H., & Kalé, L. V. (2013). A distributed dynamic load balancer for iterative applications. https://doi.org/10.1145/2503210.2503284

Mirtaheri, S. L., & Grandinetti, L. (2021). Optimized load balancing in high‐performance computing for big data analytics. Concurrency and Computation Practice and Experience, 33(16). https://doi.org/10.1002/cpe.6265

Mishra, S. K., Sahoo, B., & Parida, P. P. (2018). Load balancing in cloud computing: A big picture. Journal of King Saud University - Computer and Information Sciences, 32(2), 149. https://doi.org/10.1016/j.jksuci.2018.01.003

Nagiyev, A. E., Sherstnyova, A. I., Botygin, I., & Galanova, N. Yu. (2016). Description and development of the means of a model experiment for load balancing in distributed computing systems. IOP Conference Series Materials Science and Engineering, 135, 12030. https://doi.org/10.1088/1757-899x/135/1/012030

Nawrocki, P., Osypanka, P., & Posluszny, B. (2023). Data-Driven Adaptive Prediction of Cloud Resource Usage. Journal of Grid Computing, 21(1). https://doi.org/10.1007/s10723-022-09641-y

Peng, Z., Lin, J., Cui, D., Li, Q., & He, J. (2020). A multi-objective trade-off framework for cloud resource scheduling based on the Deep Q-network algorithm. Cluster Computing, 23(4), 2753. https://doi.org/10.1007/s10586-019-03042-9

Radhakrishnan, G. (2012). Adaptive Application Scaling for Improving Fault-Tolerance and Availability in the Cloud. Bell Labs Technical Journal, 17(2), 5. https://doi.org/10.1002/bltj.21540

Ristov, S., Gušev, M., & Velkoski, G. (2014). Modeling the Speedup for Scalable Web Services. In Advances in intelligent systems and computing (p. 177). Springer Nature. https://doi.org/10.1007/978-3-319-09879-1_18

Saxena, D., Kumar, J., Singh, A. K., & Schmid, S. (2023). Performance Analysis of Machine Learning Centered Workload Prediction Models for Cloud. IEEE Transactions on Parallel and Distributed Systems, 34(4), 1313. https://doi.org/10.1109/tpds.2023.3240567

Simaiya, S., Lilhore, U. K., Sharma, Y. K., Rao, K. B. V. B., Rao, V. V. R. M., Baliyan, A., Bijalwan, A., & Alroobaea, R. (2024). A hybrid cloud load balancing and host utilization prediction method using deep learning and optimization techniques. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-51466-0

Singh, R. (2025). Intelligent Load Balancing Systems using Reinforcement Learning System. https://doi.org/10.48550/ARXIV.2505.07844

Thapliyal, N., & Dimri, P. (2022). Load Balancing in Cloud Computing Based on Honey Bee Foraging Behavior and Load Balance Min-Min Scheduling Algorithm. International Journal of Electrical and Electronics Research, 10(1), 1. https://doi.org/10.37391/ijeer.100101

Xin, F., Gao, H., & Zhang, C. (2022). Cloud Computing Resource Prediction Model Based on Time Convolutional Network. Mobile Information Systems, 2022, 1. https://doi.org/10.1155/2022/9226647

Xu, M., Wen, L., Liao, J., Wu, H., Ye, K., & Xu, C. (2025). Auto-scaling Approaches for Cloud-native Applications: A Survey and Taxonomy. https://doi.org/10.48550/ARXIV.2507.17128

Zhu, Q., & Agrawal, G. (2010). Resource provisioning with budget constraints for adaptive applications in cloud environments. 304. https://doi.org/10.1145/1851476.1851516

Downloads

Published

07-10-2025

Issue

Section

Research Articles

How to Cite

[1]
Sangle Harshal Sunil and Jeetendra Singh Yadav, “Adaptive Load Balancing Techniques for Improved Cloud Service Performance”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 11, no. 5, pp. 174–181, Oct. 2025, Accessed: Nov. 01, 2025. [Online]. Available: https://ijsrcseit.technoscienceacademy.com/index.php/home/article/view/CSEIT25111718