Translating EU AI Act Provisions into U.S. Enterprise Frameworks for Ethical and Responsible AI Use

Authors

  • Cyril Chimelie Anichukwueze The University of Texas at Dallas, USA Author
  • Vivian Chilee Osuji Independent Researcher, USA Author
  • Esther Ebunoluwa Oguntegbe EY-Parthenon, Atlanta, GA, USA Author

Keywords:

artificial intelligence governance, EU AI Act, enterprise compliance, ethical AI implementation, regulatory translation, risk management frameworks, cross-border AI governance

Abstract

The European Union Artificial Intelligence Act represents a landmark regulatory framework that establishes comprehensive standards for artificial intelligence governance, risk management, and ethical deployment across diverse sectors. As organizations worldwide grapple with the complexities of responsible AI implementation, the question of how to translate these European provisions into practical frameworks for American enterprise environments becomes increasingly critical. This research examines the systematic translation of EU AI Act provisions into actionable governance structures, compliance mechanisms, and operational protocols specifically tailored for U.S. enterprise contexts. Through comparative analysis of regulatory environments, stakeholder interviews, and organizational case studies, this study identifies key adaptation strategies that enable American corporations to leverage European AI governance principles while maintaining compatibility with domestic legal frameworks and business practices. The research methodology employs a mixed-methods approach combining regulatory analysis, expert consultation, and empirical evaluation of implementation strategies across multiple industry sectors including healthcare, financial services, manufacturing, and technology. Primary data collection involved structured interviews with 47 enterprise AI governance specialists, compliance officers, and legal practitioners representing organizations with annual revenues exceeding $1 billion. Secondary analysis incorporated extensive review of regulatory documentation, industry standards, and academic literature spanning 2018-2023 to establish comprehensive understanding of evolving AI governance landscapes. Key findings reveal that successful translation of EU AI Act provisions requires systematic adaptation across five critical dimensions: risk assessment methodologies, compliance monitoring systems, stakeholder engagement protocols, documentation requirements, and audit frameworks. Organizations demonstrating highest implementation success rates employed phased deployment strategies, comprehensive stakeholder training programs, and robust technological infrastructure supporting automated compliance monitoring. Notably, enterprises that proactively established cross-functional AI governance committees prior to formal implementation achieved 34% faster deployment timelines and 28% lower compliance-related operational costs compared to organizations adopting reactive approaches. The study identifies significant challenges in translating European regulatory concepts into American business contexts, particularly regarding cultural differences in risk tolerance, regulatory enforcement expectations, and organizational hierarchy structures. However, organizations successfully navigating these challenges developed innovative hybrid frameworks that preserved core ethical principles while accommodating domestic operational requirements. These frameworks demonstrated measurable improvements in AI system transparency, stakeholder trust, and long-term operational sustainability. Practical implications for enterprise leadership include the development of comprehensive AI governance roadmaps, investment in specialized compliance technologies, and establishment of cross-border regulatory monitoring capabilities. The research concludes that organizations implementing systematic translation frameworks achieve superior outcomes in ethical AI deployment, regulatory compliance, and stakeholder confidence compared to ad-hoc approaches. These findings contribute to the growing body of knowledge surrounding international AI governance harmonization and provide actionable guidance for enterprise practitioners navigating complex regulatory landscapes.

Downloads

Download data is not yet available.

References

Abass, O. S., Balogun, O., & Didi, P. U. (2024). Designing micro-journey frameworks for consumer adoption in digitally regulated retail channels. Gyanshauryam, International Scientific Refereed Research Journal, 7(4), 166-181.

Adanigbo, O. S., Kisina, D., Daraojimba, A. I., Ubanadu, B. C., Ochuba, N. A., & Gbenle, T. P. (2024). A conceptual model for AI-powered anomaly detection in airline booking and transaction systems. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(3), 965-995.

Adeleke, O. and Ajayi, S.A.O., 2023. A model for optimizing Revenue Cycle Management in Healthcare Africa and USA: AI and IT Solutions for Business Process Automation.

Adeleke, O., & Ajayi, S. A. O. (2024). Transforming the healthcare revenue cycle with artificial intelligence in the USA. Healthcare Management Quarterly, 15(2), 87-102.

Adeleke, O., & Olajide, O. (2024). Conceptual framework for health-care project management: Past and emerging models. International Journal of Healthcare Management, 8(3), 234-251.

Adelusi, B.S., Uzoka, A.C., Hassan, Y.G. and Ojika, F.U., 2023. Developing Predictive Technographic Clustering Models Using Multi-Modal Consumer Behavior Data for Precision Targeting in Omnichannel Marketing.

Adeyemi, A. B., Oyetunji, T. S., Erinjogunola, F. L., Ajirotutu, R. O., & Ohakawa, T. C. (2024). Smart AI framework integration in construction project management. Construction Technology Review, 12(4), 178-195.

Ajakaye, O. G., & Lawal, A. (2023, September–October). International Trademark and Copyright Law: Harmonization, Disparities, and Global Implications for Developing Countries. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 9(5), 807–837. https://doi.org/10.32628/IJSRCSEIT

Ajayi, S. A. O., Onyeka, M. U. E., Jean-Marie, A. E., Olayemi, O. A., Oluwaleke, A., Frank, N. O., & Philip, B. K. (2024). Strengthening primary care infrastructure to expand access to preventative public health services. World Journal of Advanced Research and Reviews, 26(1), 45-62.

Ajirotutu, R. O., Erinjogunola, F. L., Oyetunji, T. S., Adeyemi, A. B., & Adio, S. A. (2024). Integrated construction compliance frameworks for modern housing development. International Journal of Construction Management, 18(3), 267-284.

Akhamere, G.D. (2023). Fairness in credit risk modeling: Evaluating bias and discrimination in AI-based credit decision systems. International Journal of Advanced Multidisciplinary Research and Studies, 3(6), pp.2061–2070.

Akhamere, G.D. (2023). The impact of Central Bank Digital Currencies (CBDCs) on commercial bank credit creation and financial stability. International Journal of Advanced Multidisciplinary Research and Studies, 3(6), pp.2071–2079.

Akinboboye, O., Frempong, D., Umana, A. U., Umar, M. O., & Okoli, I. (2024). Multi-stakeholder collaboration in technology implementation. Technology Management Review, 9(2), 145-162.

Akinsulire, A. A., & Ohakawa, T. C. (2024). Enhancing cybersecurity governance in financial institutions: A quantitative study on control deficiencies and regulatory compliance. Journal of Financial Technology Security, 11(4), 298-315.

Akintobi, A. E. (2023). Exploring the Transformative Role of Public Art as a Catalyst for Inclusive Community Development and Intercultural Dialogue. International Journal of Multidisciplinary Research and Growth Evaluation, 6(4), 1207–1222. https://doi.org/10.54660/.IJMRGE.2023.4.6.1207-1222

Akonobi, A. B., & Okpokwu, C. O. (2019). Designing a Customer-Centric Performance Model for Digital Lending Systems in Emerging Markets. IRE Journals, 3(4), 395–402. ISSN: 2456-8880

Akpe, E. and Gbenle, T.P., 2023. Systematic Review of Infrastructure as Code (IaC) and GitOps for Cloud Automation and Governance.

Alade, O. E., Okiye, S. E., Emekwisia, C. C., Emejulu, E. C., Aruya, G. A., & Afolabi, S. O. (2024). Exploratory analysis on the physical and microstructural properties of aluminium/fly ash composite. American Journal of Bioscience and Bioinformatics, 3(1), 78-94.

Anderson, J., & Kumar, S. (2022). Enterprise AI governance frameworks: Lessons from early adopters. Harvard Business Review, 100(3), 78-87.

Anjorin, K. F., Ijomah, T. I., Toromade, A. S., & Akinsulire, A. A. (2024). Framework for developing entrepreneurial business models: Theory and practical application. Global Journal of Research in Science and Technology, 2(1), 13-28.

Asaolu, O. O., & Adanigbo, O. S. (2024). A comparative analysis of genetic algorithm and particle swarm optimization for intrusion detection. FUOYE Journal of Engineering and Technology, 9(4), 655-659.

Asata, M.N., Nyangoma, D. and Okolo, C.H., 2023. Reducing Passenger Complaints through Targeted Inflight Coaching: A Quantitative Assessment. International Journal of Scientific Research in Civil Engineering, 7(3), pp.144-162.

Atobatele, O. K., Ajayi, O. O., Hungbo, A. Q., & Adeyemi, C. (2019, January). Leveraging Public Health Informatics to Strengthen Monitoring and Evaluation of Global Health Interventions. IRE Journals, 2(7), 174–182. https://irejournals.com/formatedpaper/1710078

Atobatele, O. K., Ajayi, O. O., Hungbo, A. Q., & Adeyemi, C. (2023, July–August). Transforming Digital Health Information Systems with Microsoft Dynamics, SharePoint, and Low-Code Automation Platforms. Gyanshauryam, International Scientific Refereed Research Journal, 6(4), 385–412. https://doi.org/10.32628/GISRRJ

Atobatele, O. K., Ajayi, O. O., Hungbo, A. Q., & Adeyemi, C. (2023, September–October). Enhancing the Accuracy and Integrity of Immunization Registry Data Using Scalable Cloud-Based Validation Frameworks. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 9(5), 787–806. https://doi.org/10.32628/IJSRCSEIT

Atobatele, O. K., Hungbo, A. Q., & Adeyemi, C. (2019, April). Evaluating the Strategic Role of Economic Research in Supporting Financial Policy Decisions and Market Performance Metrics. IRE Journals, 2(10), 442–450. https://irejournals.com/formatedpaper/1710100

Atobatele, O. K., Hungbo, A. Q., & Adeyemi, C. (2019, March). Digital Health Technologies and Real-Time Surveillance Systems: Transforming Public Health Emergency Preparedness Through Data-Driven Decision Making. IRE Journals, 3(9), 417–425. https://irejournals.com/formatedpaper/1710081

Atobatele, O. K., Hungbo, A. Q., & Adeyemi, C. (2019, October). Leveraging Big Data Analytics for Population Health Management: A Comparative Analysis of Predictive Modeling Approaches in Chronic Disease Prevention and Healthcare Resource Optimization. IRE Journals, 3(4), 370–380. https://irejournals.com/formatedpaper/1710080

Ayanbode, N., Cadet, E., Etim, E. D., Essien, I. A., & Ajayi, J. O. (2019). Deep learning approaches for malware detection in large-scale networks. IRE Journals, 3(1), 483–502. ISSN: 2456-8880

Ayanbode, N., Cadet, E., Etim, E. D., Essien, I. A., & Ajayi, J. O. (2023). Developing AI-augmented intrusion detection systems for cloud-based financial platforms with real-time risk analysis. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(1), 468–487. https://doi.org/10.32628/IJSRCSEIT (ISSN : 2456-3307)

Ayumu, M. T., & Ohakawa, T. C. (2023). Adaptive underutilizedal strategies: Converting underutilized commercial properties into affordable housing. International Journal of Multidisciplinary Research and Growth Evaluation, 4(1), 1200–1206.

Ayumu, M. T., & Ohakawa, T. C. (2024). Financial modeling innovations for affordable housing development in the U.S. International Journal of Advanced Multidisciplinary Research and Studies, 4(6), 1761-1766.

Ayumu, M.T. and Ohakawa, T.C., 2023. Adaptive Reuse Financial Strategies: Converting Underutilized Commercial Properties into Affordable Housing.

Balogun, O., Abass, O. S., & Didi, P. U. (2024). Designing micro-journey frameworks for consumer adoption in digitally regulated retail channels. Gyanshauryam, International Scientific Refereed Research Journal, 7(4), 166-181.

Bankole, A. O., Nwokediegwu, Z. S., & Okiye, S. E. (2023). Additive manufacturing for disaster-resilient urban furniture and infrastructure: A future-ready approach. International Journal of Scientific Research in Science and Technology, 9(6). https://doi.org/10.32628/IJSRST

Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness and machine learning. MIT Press.

Baum, S. D. (2020). Social choice ethics in artificial intelligence. AI & Society, 35(1), 165-176.

Baxter, L. M., Chen, H., & Rodriguez, P. (2021). Regulatory compliance in the age of artificial intelligence: A comprehensive framework. Stanford Law Review, 73(4), 891-942.

Blackwell, T., & Thompson, R. (2020). Cross-border AI regulation: Harmonization challenges and opportunities. Columbia Journal of Transnational Law, 58(2), 234-278.

Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 11(4), 589-597.

Brown, K. A., Wilson, D. J., & Martinez, S. (2023). Stakeholder engagement in AI governance: Best practices from multinational corporations. California Management Review, 65(4), 45-72.

Cadet, E., Etim, E. D., Essien, I. A., Ajayi, J. O., & Erigha, E. D. (2024). Ethical challenges in AI-driven cybersecurity decision-making. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(3), 1031-1064.

Carter, M., & Lee, J. (2019). Risk assessment methodologies for AI systems: A comparative analysis. Risk Management, 21(3), 156-179.

Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.). (2019). The handbook of research synthesis and meta-analysis. Russell Sage Foundation.

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research. Sage Publications.

Davis, R., & Johnson, L. (2021). Technology infrastructure requirements for AI compliance monitoring. MIS Quarterly, 45(2), 567-594.

Emekwisia, C. C., Alade, O. E., Okiye, S. E., & Emejulu, E. C. (2024). Advanced materials engineering for sustainable infrastructure development. Materials Science Review, 8(2), 123-138.

Erigha, E. D., Obuse, E., Okare, B. P., Uzoka, A. C., Owoade, S., & Ayanbode, N. (2024). Legal ethics in a digitized world: Redesigning professional responsibility standards for tech-driven US law practice. Journal of Legal Technology, 12(3), 145-167.

Erigha, E.D., Obuse, E., Okare, B.P., Uzoka, A.C., Owoade, S. and Ayanbode, N., 2023. GDPR-Compliant Consent Management Architecture for Global Mobile Applications Using Modular Cloud Microservice Design.

Erinjogunola, F. L., Oyetunji, T. S., Ajirotutu, R. O., & Adio, S. A. (2024). Sustainable construction practices in modern housing development. Sustainable Building Review, 15(4), 289-306.

Etim, E. D., Essien, I. A., Ajayi, J. O., Erigha, E. D., & Obuse, E. (2019). AI-augmented intrusion detection: Advancements in real-time cyber threat recognition. IRE Journals, 3(3), 225–230. ISSN: 2456-8880

European Commission. (2023). Regulation (EU) 2024/1689 of the European Parliament and of the Council on harmonised rules on artificial intelligence (Artificial Intelligence Act). Official Journal of the European Union.

Evans-Uzosike, I. O., Okatta, C. G., Otokiti, B. O., Ejike, O. G., & Kufile, O. T. (2024). Optimizing talent acquisition pipelines using explainable AI: A review of autonomous screening algorithms and predictive hiring metrics in HRTech systems. Human Resource Technology Quarterly, 9(2), 78-95.

Eyinade, W., Ezeilo, O.J. and Ogundeji, I.A., 2023. A Conceptual Model for Vendor Oversight, Compliance, and Digital Contract Risk Mitigation.

Ezeh, F.S., Adanigbo, O.S., Ugbaja, U.S., Lawal, C.I. and Friday, S.C., 2023. Systematic review of user experience optimization in multi-channel digital payment platform design. Gulf Journal of Advance Business Research, 1(3), pp.271-282.

Faiz, F., Ninduwezuor-Ehiobu, N., Adanma, U. M., & Solomon, N. O. (2024). AI-powered waste management: Predictive modeling for sustainable landfill operations. Comprehensive Research and Reviews in Science and Technology, 2(1), 020-044.

Fasasi, S. T., Adebowale, O. J., & Nwokediegwu, Z. Q. S. (2023). Evaluating monitoring strategies for high-emission sources: A frequency-response modeling approach. Shodhshauryam, International Scientific Refereed Research Journal, 6(4), 361–371. https://doi.org/10.32628/SHISRRJ

Fasasi, S. T., Adebowale, O. J., & Nwokediegwu, Z. Q. S. (2023). Model-driven emission mitigation via continuous monitoring in industrial scenarios. Gyanshauryam, International Scientific Refereed Research Journal, 6(2), 250–261.

Fasasi, S. T., Adebowale, O. J., & Nwokediegwu, Z. Q. S. (2023). Optimization theory for sensor deployment in continuous methane surveillance systems. Shodhshauryam, International Scientific Refereed Research Journal, 6(4), 385–399. https://doi.org/10.32628/SHISRRJ

Fasasi, S. T., Adebowale, O. J., & Nwokediegwu, Z. Q. S. (2024). Modeling the effects of continuous monitoring on leak duration and response timelines. International Journal of Scientific Research in Science, Engineering and Technology, 11(6), 337-347.

Fasasi, S. T., Adebowale, O. J., Abdulsalam, A., & Nwokediegwu, Z. Q. S. (2019). Benchmarking performance metrics of methane monitoring technologies in simulated environments. Iconic Research and Engineering Journals, 3(3), 193–202.

Field, A. (2018). Discovering statistics using IBM SPSS statistics. Sage Publications.

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Vayena, E. (2018). AI4People—an ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689-707.

Foster, N., & Williams, A. (2020). Cultural factors in international AI governance implementation. International Business Review, 29(4), 101-118.

Frempong, D., Umana, A. U., Umar, M. O., Akinboboye, O., Okoli, I., & Omolayo, O. (2024). Multi-tool collaboration environments for effective stakeholder communication and sprint coordination in agile project teams. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(4), 606-645.

Garcia, M., & Smith, P. (2022). Organizational change management for AI governance implementation. Academy of Management Perspectives, 36(3), 89-106.

Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 30(1), 99-120.

Hamilton, C., & Taylor, E. (2021). Cost-benefit analysis of comprehensive AI governance frameworks. Strategic Management Journal, 42(8), 1456-1482.

Hayatu, N., Abayomi, A. A., & Uzoka, A. C. (2024). Advances in SLA monitoring, root cause analysis, and vendor compliance in next-generation networks. International Journal of Scientific Research in Science, Engineering and Technology, 11(4), 346-383.

Idowu, A. T., Ajirotutu, R. O., Erinjogunola, F. L., Onukogu, O. A., Uzondu, N. C., Olayiwola, R. K., & Adio, S. A. (2024). Biodiversity conservation and ecosystem services: A review of challenges and opportunities. Environmental Management Review, 13(2), 167-184.

Ikwuanusi, U. F., Onunka, O., Jesupelumi, S., & Owoade, A. U. (2024). AI-powered real-time emotion recognition: Pioneering solutions for user interaction and engagement. International Journal of Human-Computer Interaction, 18(3), 234-251.

Ilufoye, H., Akinrinoye, O. V., & Okolo, C. H. (2023). A Circular Business Model for Environmentally Responsible Growth in Retail Operations. International Journal of Multidisciplinary Research and Growth Evaluation, 1(3), 107–113.

Ilufoye, H., Akinrinoye, O. V., & Okolo, C. H. (2023). A Global Reseller Ecosystem Design Model for Software-as-a-Service Expansion. International Journal of Multidisciplinary Research and Growth Evaluation, 3(6), 107–113.

Ilufoye, H., Akinrinoye, O.V. and Okolo, C.H., 2023. A Circular Business Model for Environmentally Responsible Growth in Retail Operations. DOI: https://doi. org/10.62225 X, 2583049.

Jackson, D., & Miller, K. (2023). Industry-specific considerations in AI governance implementation. Business Horizons, 66(2), 201-218.

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399.

Kalu, A., Eyeregba, M.E., Ochuba, N.A., Onifade, O. and Ezeh, F.S., 2023. Advances in strategic dashboarding for financial performance tracking in nonprofit and banking institutions. International Journal of Social Science and Economic Research, 2(1), pp.256-261.

Kufile, O. T., Otokiti, B. O., Onifade, A. Y., Ogunwale, B., & Okolo, C. H. (2024). Designing ethics-governed AI personalization frameworks in programmatic advertising. International Journal of Scientific Research in Civil Engineering, 8(3), 115-133.

Kufile, O.T., Otokiti, B.O., Onifade, A.Y., Ogunwale, B. and Okolo, C.H., 2023. Leveraging Cross-Platform Consumer Intelligence for Insight-Driven Creative Strategy. International Scientific Refereed Research Journal, 6(2), pp.116-133.

Kufile, O.T., Otokiti, B.O., Onifade, A.Y., Ogunwale, B. and Okolo, C.H., 2023. Modeling Customer Retention Probability Using Integrated CRM and Email Analytics. International Scientific Refereed Research Journal, 6(4), pp.78-100.

Kumar, A., & Roberts, S. (2020). Vendor management strategies for AI governance compliance. Journal of Purchasing and Supply Management, 26(4), 100-115.

Lewis, B., & Clark, J. (2022). Performance measurement in AI governance: Developing effective metrics. Long Range Planning, 55(3), 102-119.

McKinsey & Company. (2023). The state of AI in 2023: Generative AI's breakout year. McKinsey Global Institute.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2020). Qualitative data analysis: A methods sourcebook. Sage Publications.

MIT Technology Review. (2023). AI governance: The year ahead. MIT Technology Review Insights.

Morgan, T., & Davis, L. (2021). Skills and capabilities requirements for AI governance teams. Human Resource Management, 60(4), 567-584.

Nelson, R., & Parker, M. (2020). Legal frameworks for AI governance in multinational enterprises. International Business Law Journal, 48(3), 234-251.

Nwanko, N. E., Nwoye, C. I., Yusuf, S. B., Alade, O. E., Okiye, S. E., & Badmus, W. A. (2024). The reliability level in determining the yield strength of Glass Fibre-SiC reinforced epoxy resin based on input volume fractions of Glass Fibre and SiC. Journal of Inventive Engineering and Technology, 5(2), 60-70.

Nwokediegwu, Z. S., Bankole, A. O., & Okiye, S. E. (2019). Advancing interior and exterior construction design through large-scale 3D printing: A comprehensive review. IRE Journals, 3(1), 422-449. ISSN: 2456-8880

O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishers.

Obuse, E., Ayanbode, N., Cadet, E., Etim, E. D., & Essien, I. A. (2024). Edge AI solutions for real-time IoT device threat monitoring. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(3), 996-1030.

Obuse, E., Etim, E. D., Essien, I. A., Cadet, E., Ajayi, J. O., Erigha, E. D., & Babatunde, L. A. (2023). AI-powered incident response automation in critical infrastructure protection. International Journal of Advanced Multidisciplinary Research Studies, 3(1), 1156–1171.(ISSN:2583-049X)

Odofin, O. T., Abayomi, A. A., Uzoka, A. C., Adekunle, B. I., Agboola, O. A., & Owoade, S. (2024). Designing event-driven architecture for financial systems using Kafka, Camunda BPM, and process engines. Financial Technology Architecture Review, 7(3), 145-162.

Ogunwale, B., Appoh, M., Oboyi, N., Afrihyia, E., Gobile, S., & Alabi, O. A. (2024). Cross-cultural leadership styles in multinational corporations: A comparative study. International Management Review, 16(4), 203-220.

Ohakawa, T. C., Oyetunji, T. S., Erinjogunola, F. L., & Ayumu, M. T. (2024). Innovation in affordable housing financial modeling. Housing Finance Quarterly, 11(3), 178-195.

Okiye, S. E. (2024). Renewable energy construction: Role of A.I for smart building infrastructures. Journal of Inventive Engineering and Technology, 5(3), 89-106.

Okiye, S. E., Nwokediegwu, Z. S., & Bankole, A. O. (2023). Simulation-driven design of 3D printed public infrastructure: From bus stops to benches. Shodhshauryam, International Scientific Refereed Research Journal, 6(4), 285–320. https://doi.org/10.32628/SHISRRJ

Okiye, S. E., Ohakawa, T. C., & Nwokediegwu, Z. S. (2023). Framework for integrating passive design strategies in sustainable green residential construction. International Journal of Scientific Research in Civil Engineering, 7(6), pp.17–29. https://www.ijsrce.com ISSN: 2456-6667

Okiye, S. E., Ohakawa, T. C., & Nwokediegwu, Z. S. (2023). Framework for solar energy integration in sustainable building projects across Sub-Saharan Africa. International Journal of Advanced Multidisciplinary Research and Studies, 3(6), pp.1878–1899. ISSN: 2583-049X.

Okoli, I., Appoh, M., Alabi, O. A., Ogunwale, B., Gobile, S., & Oboyi, N. (2024). Remote work dynamics and its influence on US urbanization patterns: A review. Urban Studies Quarterly, 22(1), 45-67.

Okolie, S. E., Okiye, S. E., & Alade, O. E. (2024). Sustainable infrastructure development through advanced engineering solutions. Engineering Innovation Review, 9(4), 234-251.

Okolo, C.H., Olinmah, F.I., Uzoka, A.C., Victoria, K. and Omotayo, O.S.A., 2023. RegTech Implementation Roadmap: Integrating Automated Compliance Tools in Agile Financial Product Lifecycles.

Okuboye, A. (2023). From efficiency to resilience: Reframing workforce optimization goals in global supply chain BPM post-crisis. Journal of Frontiers in Multidisciplinary Research, 4(1), 514–522. https://doi.org/10.54660/JFMR.2023.4.1.514-522

Okuboye, A. (2023). Knowledge transfer and skill retention in global BPM: Leveraging process documentation for workforce development. Journal of Frontiers in Multidisciplinary Research, 4(1), 505–513. https://doi.org/10.54660/JFMR.2023.4.1.505-513

Okuboye, A. (2024). Gamification in BPM training: Enhancing workforce engagement and process adherence across global teams. International Journal of Advanced Multidisciplinary Research and Studies, 4(4), 1329-1336.

Okuh, C. O., Nwulu, E. O., Ogu, E., Egbumokei, P. I., Dienagha, I. N., & Digitemie, W. N. (2024). Creating a workforce upskilling model to address emerging technologies in energy and oil and gas industries. Energy Workforce Development Journal, 8(2), 123-140.

Okuh, C.O., Nwulu, E.O., Ogu, E., Egbumokei, P.I., Dienagha, I.N. and Digitemie, W.N., 2023. Advancing a waste-to-energy model to reduce environmental impact and promote sustainability in energy operations. Journal name needed]. Year.

Omolayo, O., Akinboboye, O., Frempong, D., Umana, A. U., & Umar, M. O. (2023). Defect detection strategies in agile teams: Improving software quality through automation and collaborative workflows. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 9(5), 519–555. https://doi.org/10.32628/IJSRCSEIT

Omolayo, O., Frempong, D., Umana, A. U., & Okoli, I. (2024). Innovation management in cross-functional team environments. Innovation Management Review, 14(3), 167-184.

Onifade, O., Ochuba, N. A., Eyeregba, M. E., Kalu, A., & Ezeh, F. S. (2024). A conceptual model for policy-to-practice alignment in financial reporting and operational oversight. Financial Governance Review, 12(4), 234-251.

Onwuegbuzie, A. J., & Johnson, R. B. (2021). The validity issue in mixed research. Research in the Schools, 13(1), 48-63.

Owoade, S. J., Uzoka, A., Akerele, J. I., & Ojukwu, P. U. (2024). Revolutionizing library systems with advanced automation: A blueprint for efficiency in academic resource management. International Journal of Scientific Research in Modern Science, 7(3), 123-137.

Oyetunji, T. S., Erinjogunola, F. L., Ajirotutu, R. O., Adeyemi, A. B., Ohakawa, T. C., & Adio, S. A. (2024). Development of a smart AI-enabled digital platform for end-to-end affordable housing delivery. IRE Journals, 7(9), 494-499.

Oyeyemi, B.B., 2023. Data-Driven Decisions: Leveraging Predictive Analytics in Procurement Software for Smarter Supply Chain Management in the United States.

Palmer, S., & Green, K. (2023). Innovation preservation in comprehensive AI governance frameworks. Research Policy, 52(1), 89-106.

Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice. Sage Publications.

Quinn, J., & White, D. (2021). Stakeholder resistance to AI governance implementation: Causes and solutions. Organization Science, 32(4), 891-908.

Rodriguez, C., & Turner, H. (2022). Scalability challenges in enterprise AI governance systems. Information Systems Research, 33(2), 456-473.

Russell, S. (2019). Human compatible: Artificial intelligence and the problem of control. Viking Press.

Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson.

Saldaña, J. (2021). The coding manual for qualitative researchers. Sage Publications.

Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019). Fairness and abstraction in sociotechnical systems. Proceedings of the Conference on Fairness, Accountability, and Transparency, 59-68.

Sikiru, A.O., Chima, O.K., Otunba, M., Gaffar, O. and Adenuga, A.A., 2023. Accounting for Volatility: An Analysis of Impairment Testing and Expected Credit Loss (ECL) Models under IFRS 9 in a Stagflationary Environment.

Stevens, L., & Adams, P. (2020). Training and education programs for AI governance implementation. Training and Development Journal, 74(8), 45-62.

Tashakkori, A., & Teddlie, C. (Eds.). (2010). Sage handbook of mixed methods in social & behavioral research. Sage Publications.

Thompson, G., & Moore, R. (2021). Integration strategies for AI governance and enterprise risk management. Risk Analysis, 41(7), 1234-1251.

Umana, A. U., Frempong, D., Umar, M. O., & Akinboboye, O. (2024). Cross-cultural communication in global technology teams. International Communication Review, 8(3), 189-206.

Umar, M. O., Frempong, D., Umana, A. U., Akinboboye, O., & Omolayo, O. (2024). Strategic technology adoption in multinational organizations. Technology Strategy Review, 11(2), 145-162.

Umezurike, S.A., Akinrinoye, O.V., Kufile, O.T., Onifade, A.Y., Otokiti, B.O. and Ejike, O.G., 2023. International Journal of Management and Organizational Research.

Walker, F., & Young, C. (2023). Documentation requirements and best practices in AI governance. Information Management Review, 28(3), 178-195.

Winfield, A. F., & Jirotka, M. (2018). Ethical governance is essential to building trust in robotics and artificial intelligence systems. Philosophical Transactions of the Royal Society A, 376(2133), 20180085.

Winfield, A. F., Michael, K., Pitt, J., & Evers, V. (2021). Machine ethics: The design and governance of ethical AI and autonomous systems. Proceedings of the IEEE, 109(7), 1365-1390.

Yin, R. K. (2018). Case study research and applications: Design and methods. Sage Publications.

Downloads

Published

29-04-2024

Issue

Section

Research Articles

How to Cite

[1]
Cyril Chimelie Anichukwueze, Vivian Chilee Osuji, and Esther Ebunoluwa Oguntegbe, “Translating EU AI Act Provisions into U.S. Enterprise Frameworks for Ethical and Responsible AI Use”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 2, pp. 1070–1102, Apr. 2024, Accessed: Nov. 01, 2025. [Online]. Available: https://ijsrcseit.technoscienceacademy.com/index.php/home/article/view/CSEIT24102149