Artificial Intelligence Applications in Travel Technology and Financial Management Systems
DOI:
https://doi.org/10.32628/CSEIT251117125Keywords:
Artificial Intelligence, Travel Technology, Financial Management Systems, Predictive Analytics, Digital ConvergenceAbstract
The integration of artificial intelligence (AI) within travel technology (TravelTech) and financial management systems (FinTech) is reshaping the global service ecosystem through automation, personalization, and predictive intelligence. This review explores the convergence of these two sectors, highlighting how AI enables intelligent travel planning, dynamic pricing, fraud detection, and automated financial processes. The study examines the evolution of data-driven systems that leverage machine learning, natural language processing, and predictive analytics to improve customer experience, operational efficiency, and decision-making. It further discusses the convergence of AI-enabled payment systems, customer profiling, and loyalty management frameworks that link travel behavior with financial transactions, thereby fostering unified digital ecosystems. Ethical and regulatory challenges such as data privacy, algorithmic bias, and model governance are addressed, emphasizing the need for transparency and accountability in AI deployment. Emerging trends including generative AI, digital twins, and autonomous systems are identified as transformative forces driving innovation across TravelTech and FinTech. The review concludes that the strategic adoption of AI requires strong governance, interoperability, and cross-sector collaboration to ensure sustainable, ethical, and scalable integration. Ultimately, the study provides a comprehensive framework for understanding how AI-driven convergence enhances value creation, efficiency, and resilience within the interconnected domains of travel and finance.
Downloads
References
Abah, E. O., Kahandage, P. D., Noguchi, R., Ahamed, T., Adigun, P., & Idogho, C. (2025). Assessment of platinum catalyst in rice husk combustion: A comparative life cycle analysis with conventional methods. Catalysts, 15(8), 717. DOI: https://doi.org/10.3390/catal15080717
Addy, W. A. (2022). AI in credit scoring: A comprehensive review of models and frameworks. Savings & Credit Review, 27(1), 11–30.
Alles, M., Kokina, J., & Vasarhelyi, M. A. (2020). The dark side of robotic process automation (RPA): Understanding risks in accounting automation. Accounting Horizons, 34(2), 143–158.
Araci, D. (2019). FinBERT: Financial sentiment analysis with pre-trained language models. arXiv preprint.
Baglarbasi, E. (2025). Utilizing AI for improved credit risk assessment. Decision & Transactions in Finance and Technology.
Bahoo, S. (2024). Artificial intelligence in finance: A comprehensive review. SN Business & Economics, 4. DOI: https://doi.org/10.1007/s43546-023-00618-x
Balseiro, S., Kroer, C., & Kumar, R. (2022). Single-leg revenue management with advice. Operations Research, 70(4), 396–412.
Bartram, S. M. (2021). Machine learning for active portfolio management. The Journal of Financial Data Science, 3(3), 1–24. DOI: https://doi.org/10.3905/jfds.2021.1.071
Bezabeh, B. B. (2017). The application of data mining techniques to support customer relationship management: The case of Ethiopian Revenue and Customs Authority [Unpublished manuscript].
Bleu-Laine, M.-H., Puranik, T. G., Mavris, D., & Matthews, B. (2021). Multi-class multiple instance learning for predicting precursors to aviation safety events. arXiv preprint arXiv:2103.06244. DOI: https://doi.org/10.2514/1.I010971
Cao, L. (2021). AI in finance: Challenges, techniques and opportunities. arXiv preprint. DOI: https://doi.org/10.2139/ssrn.3869625
Chang, C., et al. (2022). Factors influencing consumers’ willingness to accept robots in human–robot interaction. Frontiers in Psychology. DOI: https://doi.org/10.3389/fpsyg.2022.1016579
Corrêa, N. K., Galvão, C., Santos, J. W., Del Pino, C., Pontes Pinto, E., Barbosa, C., … Massmann, D. (2022). Worldwide AI ethics: A review of 200 guidelines and recommendations for AI governance. arXiv preprint. DOI: https://doi.org/10.2139/ssrn.4381684
Crosby, A. (2024). The crossover between embedded finance and AI. LumenAlta Insights.
Dunstall, S., Horn, M. E. T., Kilby, P., Thiebaux, S., & Others. (2003). An automated itinerary planning system for holiday travel. Information Technology & Tourism, 6, 3–19. DOI: https://doi.org/10.3727/1098305031436944
Emerald. (n.d.). Chapter 1: Artificial intelligence: Applications and implications. In Artificial Intelligence Applications and Implications. Emerald Publishing.
Faccia, A. (2021). NLP and IR applications for financial reporting and non-financial reporting. ACM Transactions on Asian and Low-Resource Language Information Processing, 20(6), Article 63.
Faccia, A. (2022). NLP and IR applications for financial reporting and non-financial reporting. ACM Transactions on Asian and Low-Resource Language Information Processing.
Faheem, M. A., Aslam, M., & Kakolu, S. (2022). Artificial intelligence in investment portfolio optimization: A comparative study of machine learning algorithms. International Journal of Science & Research Archive, 06(01), 335–342. DOI: https://doi.org/10.30574/ijsra.2022.6.1.0131
Flaherty, G. T. (2022). Predicting the natural history of artificial intelligence in travel. Travel Medicine and Infectious Disease. DOI: https://doi.org/10.1093/jtm/taac113
Gao, Z., Gao, Y., Hu, Y., Jiang, Z., & Su, J. (2020). Application of deep Q-network in portfolio management. arXiv. DOI: https://doi.org/10.1109/ICBDA49040.2020.9101333
García-Madurga, M. Á., & Grilló-Méndez, A. J. (2023). Artificial intelligence in the tourism industry: An overview of reviews. Administrative Sciences, 13(8), 172. DOI: https://doi.org/10.3390/admsci13080172
Gutiérrez-Fandiño, A., Noguer i Alonso, M., Kolm, P., & Armengol-Estapé, J. (2021). FinEAS: Financial embedding analysis of sentiment. arXiv preprint. DOI: https://doi.org/10.2139/ssrn.4028072
Hanif, A. (2021). Towards explainable artificial intelligence in banking and financial services [Preprint].
Hasan, A. R. (2022). Artificial intelligence (AI) in accounting & auditing: A literature review. Open Journal of Business and Management, 10(1), 440–465. DOI: https://doi.org/10.4236/ojbm.2022.101026
Hentzen, J. K., Hoffmann, A., & Dolan, R. (2022). Artificial intelligence in customer-facing financial services: A systematic literature review and agenda for future research. International Journal of Bank Marketing, 41(9), 1297–1317. DOI: https://doi.org/10.1108/IJBM-09-2021-0417
Ho, N. L., & Lim, K. H. (2021). User preferential tour recommendation based on POI-embedding methods. arXiv preprint arXiv:2103.02464. DOI: https://doi.org/10.1145/3397482.3450717
Hradecky, D. (2022). Organizational readiness to adopt artificial intelligence in the exhibition sector. Journal of Business Research, 142, 254–263. DOI: https://doi.org/10.1016/j.ijinfomgt.2022.102497
Hu, Z., Zhao, Y., & Khushi, M. (2021). A survey of Forex and stock price prediction using deep learning. arXiv preprint. DOI: https://doi.org/10.3390/asi4010009
Huang, A., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172. DOI: https://doi.org/10.1177/1094670517752459
Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (RPA) in auditing: A framework. International Journal of Accounting Information Systems, 35, 100433. DOI: https://doi.org/10.1016/j.accinf.2019.100433
Huang, L. (2021). Novel deep learning approach for forecasting daily hotel demand with agglomeration effect. Tourism Management, 83, 104–110. DOI: https://doi.org/10.1016/j.ijhm.2021.103038
Idogho, C., Abah, E. O., Abel, J. E., Harsito, C., Omoniyi, M., & Boriwaye, T. (2025). Compatibility study of synthesized materials for thermal transport in thermoelectric power generation. American Journal of Innovation in Science and Engineering (AJISE), 4(1). https://doi.org/10.54536/ajise.v4i1.3948 DOI: https://doi.org/10.54536/ajise.v4i1.3948
Idogho, C., Abah, E. O., Onuh, J. O., Harsito, C., Omenka, K., Samuel, A., Ejila, A., Idoko, I. P., & Ali, U. E. (2025). Machine learning-based solar photovoltaic power forecasting for Nigerian regions. Energy Science & Engineering, 13(7), 1922–1934. https://doi.org/10.1002/ese3.70013 DOI: https://doi.org/10.1002/ese3.70013
Idoko, P. I., Ezeamii, G. C., Idogho, C., Peter, E., Obot, U. S., & Iguoba, V. A. (2024). Mathematical modeling and simulations using software like MATLAB, COMSOL and Python. Magna Scientia Advanced Research and Reviews, 12(2), 062–095.* DOI: https://doi.org/10.30574/msarr.2024.12.2.0181
Ikedionu, C. A., Idoko, I. P., Omale, J. O., & Idogho, C. (2025). Mathematical modeling of 3D printing of microreactors for continuous flow chemical processes. International Journal of Research Publication and Reviews. https://doi.org/10.55248/gengpi.6.0525.2008 DOI: https://doi.org/10.55248/gengpi.6.0525.2008
Khan, A. A., Badshah, S., Liang, P., Khan, B., Waseem, M., Niazi, M., & Akbar, M. A. (2022). AI ethics: An empirical study on the views of practitioners and lawmakers. AI & Society, 37(3), 905–920.
Kokina, J., & Blanchette, S. (2019). Early evidence of digital labor in accounting: Innovation with robotic process automation. International Journal of Accounting Information Systems, 35, 100431. DOI: https://doi.org/10.1016/j.accinf.2019.100431
Koo, C. (2021). Artificial intelligence (AI) and robotics in travel, hospitality and tourism. International Journal of Contemporary Hospitality Management, 33(5), 1793–1813.
Kurshan, E., Shen, H., & Chen, J. H. (2020). Towards self-regulating AI: Challenges and opportunities of AI model governance in financial services. arXiv preprint arXiv:2010.04827. DOI: https://doi.org/10.1145/3383455.3422564
Lagna, U., & Ravishankar, M. N. (2021). A study on exploring the intersection of fintech and embedded finance. IOSR Journal of Business and Management, S2(2), 45–50.
Lee, J., & Chen, Y.-F. (2022). AI-based segmentation and customer lifetime value modelling in banking services. Journal of Financial Innovation, 8, 45–62.
Li, B., Qi, P., Liu, B., Di, S., Pei, J., & Yi, J. (2021). Trustworthy AI: From principles to practices. arXiv preprint arXiv:2110.01167.
Lu, L., Cai, R., & Gursoy, D. (2019). Developing and validating a service robot integration willingness scale. International Journal of Hospitality Management, 80, 36–51. DOI: https://doi.org/10.1016/j.ijhm.2019.01.005
Ma, Q., Feng, S., & Liu, J. (2024). Dynamic pricing and demand forecasting: Integrating time-series analysis, regression models, machine learning and competitive analysis. Applied and Computational Engineering, 93, 149–154. DOI: https://doi.org/10.54254/2755-2721/93/20240935
Maduabuchi, C., Nsude, C., Eneh, C., Eke, E., Okoli, K., Okpara, E., & Idogho, C. (2023). Renewable energy potential estimation using climatic-weather-forecasting machine learning algorithms. Energies, 16(4), 1603. https://doi.org/10.3390/en16041603 DOI: https://doi.org/10.3390/en16041603
Maduabuchi, C., Nsude, C., Eneh, C., Eke, E., Okoli, K., Okpara, E., Idogho, C., & Harsito, C. (2023). Machine learning-inspired weather forecasting for clean energy potential [Preprint]. SSRN. https://doi.org/10.2139/ssrn.4266659 DOI: https://doi.org/10.2139/ssrn.4266659
Melián-González, S., Gutiérrez-Taño, D., & Bulchand-Gidumal, J. (2021). Predicting the intentions to use chatbots for travel and tourism. Current Issues in Tourism, 24, 192–210. DOI: https://doi.org/10.1080/13683500.2019.1706457
Mertzanis, C. (2023). FinTech market growth and business travel around the world. SSRN. DOI: https://doi.org/10.2139/ssrn.4562453
Mhlanga, D. (2020). Industry 4.0 in finance: The impact of artificial intelligence. Risks, 8(3), 45. DOI: https://doi.org/10.3390/ijfs8030045
Nam, K., Dutt, C. S., Chathoth, P., Daghfous, A., & Khan, M. S. (2021). The adoption of artificial intelligence and robotics in the hotel industry: Prospects and challenges. Electronic Markets, 31, 553–574. DOI: https://doi.org/10.1007/s12525-020-00442-3
Nguyen, T. T., & Nguyen, T. T. (2020). Artificial intelligence in finance: A comprehensive review and future research directions. International Journal of Finance & Economics.
Onuh, P., Ejiga, J. O., Abah, E. O., Onuh, J. O., Idogho, C., & Omale, J. (2024). Challenges and opportunities in Nigeria's renewable energy policy and legislation. World Journal of Advanced Research and Reviews, 23(2).* https://doi.org/10.30574/wjarr.2024.23.2.2391 DOI: https://doi.org/10.30574/wjarr.2024.23.2.2391
Permata, A. N. S., Idogho, C., Harsito, C., Thomas, I., & John, A. E. (2025). Compatibility in thermoelectric material synthesis and thermal transport. Unconventional Resources, 7, Article 100198. https://doi.org/10.1016/j.uncres.2025.100198 DOI: https://doi.org/10.1016/j.uncres.2025.100198
Prentice, C., Lopes, S. D., & Wang, X. (2020). The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. Journal of Hospitality Marketing & Management, 29, 739–756. DOI: https://doi.org/10.1080/19368623.2020.1722304
Qoco Aero. (n.d.). AI in aviation maintenance: How it's changing the industry. Qoco Aero Blog.
Rahimikia, E., Zohren, S., & Poon, S.-H. (2021). Realised volatility forecasting: Machine learning via financial word embedding. arXiv preprint. DOI: https://doi.org/10.2139/ssrn.3895272
Roy, P. (2025). Artificial intelligence and finance: A bibliometric review on the… [Preprint]. DOI: https://doi.org/10.12688/f1000research.160959.1
Shukla, N., Kolbeinsson, A., Otwell, K., Marla, L., & Yellepeddi, K. (2019). Dynamic pricing for airline ancillaries with customer context. arXiv preprint. DOI: https://doi.org/10.1145/3292500.3330746
Striim. (n.d.). Real-time intelligence for predictive aircraft maintenance. Striim Blog.
Tuo, Y. (2020). How artificial intelligence will change the future of tourism. Sustainability, 12(8), 3199.
Uren, V. (2023). Technology readiness and the organizational journey: A multi-industry study of AI adoption. Technovation, 117, 102482. DOI: https://doi.org/10.1016/j.ijinfomgt.2022.102588
van Hulst, J. M., Zeni, M., Kröller, A., Moons, C., & Casale, P. (2020). Beyond privacy regulations: An ethical approach to data usage in transportation. arXiv preprint.
Vargas-Calderón, V., Moros Ochoa, A., Castro Nieto, G. Y., & Camargo, J. E. (2021). Machine learning for assessing quality of service in the hospitality sector based on customer reviews. arXiv preprint, 2107.10328. DOI: https://doi.org/10.1007/s40558-021-00207-4
Xuejie Qiu, Bu, T., Kong, H., & Wang, K. (2021). Thirty years of artificial intelligence (AI) research relating to the hospitality and tourism industry. International Journal of Contemporary Hospitality Management, 33(5), 1793–1813.*
Zhang, X., & Zhao, X. (2021). A clustering-aided ensemble method for predicting ridesourcing demand in Chicago. arXiv preprint.
Ziyad, M., Tjandra, K., Zulvah, Faiz Sugihartanto, M., & Arief, M. (2022). An optimized and safety-aware maintenance framework: A case study on aircraft engine. arXiv preprint arXiv:2209.02678. DOI: https://doi.org/10.1109/ITSC55140.2022.9922187
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.