Modelling Crop Yield with Deep CNN-LSTM for Spatiotemporal Data Analysis
DOI:
https://doi.org/10.32628/CSEIT25111697Keywords:
CNN-LSTM, Agriculture Data, Image Processing, Pattern Recognition, Crop Yield Prediction, Deep LearningAbstract
Agriculture is a fundamental component of human civilization. It strengthens the economy while providing sustenance. Plant foliage and crops are susceptible to several diseases in agricultural techniques. Precise forecasting of crop yield is crucial for effective agricultural resource management. Elements such as meteorological conditions, soil hydration, and temperature significantly influence agricultural productivity, making accurate forecasting essential. Traditional crop recommendation approaches often rely on heuristic principles or expert knowledge, which may lack accuracy and adaptability to changing environmental and market circumstances. Consequently, a data-driven methodology is required to use existing knowledge on soil, weather, and crops to provide best agricultural recommendations to farmers. This study introduces a novel approach for predicting agricultural output via a hybrid model. Our study introduces a hybrid model that improves crop production forecasting by combining a 1D Convolutional Neural Network (CNN) with a Long Short-Term Memory (LSTM) network and an attention mechanism. The model is primarily used for wheat and rice, which are principal crops in India. The model transforms into a CNN-LSTM hybrid, aimed at enhancing prediction accuracy via adjustments such as multi-head attention and a multiplication skip connection. This proposed system offers substantial decision-making support for farmers and agricultural stakeholders, facilitating informed, data-driven choices that enhance sustainability and efficiency in agriculture.
Downloads
References
Gavasso-Rita, Y.L.; Papalexiou, S.M.; Li, Y.; Elshorbagy, A.; Li, Z.; Schuster-Wallace, C. Crop models and their use in assessing crop production and food security: A review. Food Energy Secur. 2024, 13, e503 DOI: https://doi.org/10.1002/fes3.503
Chen, P.; Li, Y.; Liu, X.; Tian, Y.; Zhu, Y.; Cao,W.; Cao, Q. Improving yield prediction based on spatio-temporal deep learning approaches for winter wheat: A case study in Jiangsu Province, China. Comput. Electron. Agric. 2023, 213, 108201 DOI: https://doi.org/10.1016/j.compag.2023.108201
Patil V. H. ., Ghaly M. A. ., Yusuf Perwej, Shrivastava A., “A Novel Approach for Crop Selection and Water Management using Mamdani’s Fuzzy Inference and IoT” , International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), SCOPUS, ISSN: 2321-8169, Volume 11, Issue 9, Pages 62-68, September 2023, 10.17762/ijritcc.v11i9.8320
Y. Perwej, Firoj Parwej, “A Neuroplasticity (Brain Plasticity) Approach to Use in Artificial Neural Network”, International Journal of Scientific & Engineering Research (IJSER), France , ISSN 2229 – 5518, Volume 3, Issue 6, Pages 1- 9, 2012, DOI: 10.13140/2.1.1693.2808
Venkata K. S. Maddala, Dr. Shantanu Shahi, Yusuf Perwej, H G Govardhana Reddy, “Machine Learning based IoT application to Improve the Quality and precision in Agricultural System”, European Chemical Bulletin (ECB), ISSN: 2063-5346, SCOPUS, Hungary, Volume 12, Special Issue 6, Pages 1711 – 1722, May 2023, DOI: 10.31838/ecb/2023.12.si6.157
KDV Prasad, Yusuf Perwej, E. Nageswara Rao, Himanshu Bhaidas Patel, “IoT Devices for Agricultural to Improve Food and Farming Technology”, Journal of Survey in Fisheries Sciences (JSFS), ISSN: 2368-7487, SCOPUS, Vol. 10, No. 1S (2023): Special Issue 1, Pages 4054-4069, Canada, March 2023
Patil V. H. ., Dhanke J. ., Ghaly M. A. ., Patil, R. N. ., Yusuf Perwej, Shrivastava A., “A Novel Approach for Crop Selection and Water Management using Mamdani’s Fuzzy Inference and IoT” , International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), SCOPUS, ISSN: 2321-8169, Volume 11, Issue 9, Pages 62-68, 2023, DOI: 10.17762/ijritcc.v11i9.8320 DOI: https://doi.org/10.17762/ijritcc.v11i9.8320
Fei, S.; Hassan, M.A.; Xiao, Y.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.; Chen, R.; Ma, Y. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precis. Agric. 2023, 24, 187–212 DOI: https://doi.org/10.1007/s11119-022-09938-8
Y. Perwej, Firoj Parwej, Nikhat Akhtar, “An Intelligent Cardiac Ailment Prediction Using Efficient ROCK Algorithm and K- Means & C4.5 Algorithm”, European Journal of Engineering Research and Science (EJERS), Bruxelles, Belgium, ISSN: 2506-8016 (Online), Vol. 3, No. 12, Pages 126 – 134, 2018, DOI: 10.24018/ejers.2018.3.12.989 DOI: https://doi.org/10.24018/ejers.2018.3.12.989
van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709 DOI: https://doi.org/10.1016/j.compag.2020.105709
N. Akhtar, Hemlata Pant, Apoorva Dwivedi, Vivek Jain, Y. Perwej, “A Breast Cancer Diagnosis Framework Based on Machine Learning”, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 10, Issue 3, Pages 118-132, 2023, DOI: 10.32628/IJSRSET2310375 DOI: https://doi.org/10.32628/IJSRSET2310375
Sadenova, M.; Beisekenov, N.; Varbanov, P.S.; Pan, T. Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan. Agriculture 2023, 13, 1195
Shahhosseini, M.; Martinez-Feria, R.A.; Hu, G.; Archontoulis, S.V. Maize Yield and Nitrate Loss Prediction with Machine Learning Algorithms. Environ. Res. Lett. 2019, 14, 124026 DOI: https://doi.org/10.1088/1748-9326/ab5268
Lin, T.; Zhong, R.;Wang, Y.; Xu, J.; Jiang, H.; Xu, J.; Ying, Y.; Rodriguez, L.; Ting, K.C.; Li, H. DeepCropNet: A deep spatial-temporal learning framework for county-level corn yield estimation. Environ. Res. Lett. 2020, 15, 034016 DOI: https://doi.org/10.1088/1748-9326/ab66cb
T. K. Fegade and B. V. Pawar, "Crop prediction using artificial neural network and support vector machine," Data Management, Analytics and Innovation, Springer, Berlin, Germany, pp. 311-324, 2020. DOI: https://doi.org/10.1007/978-981-13-9364-8_23
Sandeep Gupta, Angelina Geetha, K. Sakthidasan Sankaran, Abu Sarwar Zamani, Mahyudin Ritonga, Roop Raj, Samrat Ray, Hussien Sobahi Mohammed, "Machine Learning- and Feature Selection- Enabled Framework for Accurate Crop Yield Prediction", Journal of Food Quality, vol. 2022, Article ID 6293985, 7 pages, 2022. https://doi.org/10.1155/2022/6293985. DOI: https://doi.org/10.1155/2022/6293985
Alberto Gonzalez-Sanchez, Juan Frausto-Solis, Waldo Ojeda- Bustamante, "Attribute Selection Impact on Linear and Nonlinear Regression Models for Crop Yield Prediction", The Scientific World Journal, vol. 2014, Article ID 509429, 10 pages, 2014. https://doi.org/10.1155/2014/509429. DOI: https://doi.org/10.1155/2014/509429
Woittiez, L. S., Van Wijk, M. T., Slingerland, M., Van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57-77. https://doi.org/10.1016/j.eja.2016.11.002 DOI: https://doi.org/10.1016/j.eja.2016.11.002
Kajal, Neha Singh, Nikhat Akhtar, Ms. Sana Rabbani, Yusuf Perwej, Susheel Kumar, “Using Emerging Deep Convolutional Neural Networks (DCNN) Learning Techniques for Detecting Phony News”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 10, Issue 1, Pages 122-137, 2024, DOI: 10.32628/CSEIT2410113 DOI: https://doi.org/10.32628/CSEIT2410113
N.Akhtar, Kumar Bibhuti B. Singh, Devendra Agarwal, Y. Perwej, “Improving Quality of Life with Emerging AI and IoT Based Healthcare Monitoring Systems”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, ISSN: 2456-3307, Volume 11, Issue 1, Pages 96-107, January 2025, DOI: 10.32628/CSEIT2514551 DOI: https://doi.org/10.32628/CSEIT2514551
Y. Perwej, “The Bidirectional Long-Short-Term Memory Neural Network based Word Retrieval for Arabic Documents”, Transactions on Machine Learning and Artificial Intelligence (TMLAI), which is published by Society for Science and Education, United Kingdom (UK), ISSN 2054-7390, Volume 3, Issue 1, Pages 16 - 27, 2015, DOI: 10.14738/tmlai.31.863 DOI: https://doi.org/10.14738/tmlai.31.863
Y. Perwej, “Recurrent Neural Network Method in Arabic Words Recognition System”, International Journal of Computer Science and Telecommunications (IJCST), which is published by Sysbase Solution (Ltd), UK, London, (http://www.ijcst.org) , ISSN 2047-3338, Volume 3, Issue 11, Pages 43-48, 2012
Oikonomidis A, CatalCand Kassahun A 2022 Hybrid deep learning-based models for crop yield prediction Appl. Artif. Intell. 36 2031822 DOI: https://doi.org/10.1080/08839514.2022.2031823
Kamath P, Patil P, Shrilatha S and Sowmya S 2021 Crop yield forecasting using data mining Global Transitions Proceedings 2 402–7 DOI: https://doi.org/10.1016/j.gltp.2021.08.008
Hasan M, MarjanMA, UddinMP, AfjalMI, Kardy S,MaS andNamY 2023 Ensemble machine learning-based recommendation system for effective prediction of suitable agricultural crop cultivation Frontiers in Plant Science 14 1234555 DOI: https://doi.org/10.3389/fpls.2023.1234555
Sarvesh Kumar, Dr. Shobhit Sinha, Dr. Yusuf Perwej, Ankit Shukla, Dr. Nikhat Akhtar, “Integrated Ensemble Learning Techniques for Precision Crop Yield Prediction”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 3, Pages 1072-1083, June 2025, DOI: 10.32628/CSEIT25113391 DOI: https://doi.org/10.32628/CSEIT25113391
Kumar Bibhuti B. Singh, N. Akhtar, Devendra Agarwal, Susheel Kumar, Y. Perwej, “An Evaluation of OpenCV's Investigation into Hand Gesture Recognition Methods”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 12, Issue 1, Pages 01-14, January 2025, DOI: 10.32628/IJSRSET25121150 DOI: https://doi.org/10.32628/IJSRSET25121150
Sadenova, M., Beisekenov, N., Varbanov, P.S. and Pan, T., 2023. Application of machine learning and neural networks to predict the yield of cereals, legumes, oilseeds and forage crops in Kazakhstan. Agriculture, 13(6), p.1195. DOI: https://doi.org/10.3390/agriculture13061195
Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. DOI: https://doi.org/10.1016/j.compag.2018.05.012
Marques Ramos, A.P.; Prado Osco, L.; Elis Garcia Furuya, D.; Nunes Goncalves,W.; Cordeiro Santana, D.; Pereira Ribeiro Teodoro, L.; Antonio da Silva Junior, C.; Fernando Capristo-Silva, G.; Li, J.; Henrique Rojo Baio, F.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791 DOI: https://doi.org/10.1016/j.compag.2020.105791
Ren, P.; Li, H.; Han, S.; Chen, R.; Yang, G.; Yang, H.; Feng, H.; Zhao, C. Estimation of Soybean Yield by Combining Maturity Group Information and Unmanned Aerial Vehicle Multi-Sensor Data Using Machine Learning. Remote Sens. 2023, 15, 4286. DOI: https://doi.org/10.3390/rs15174286
Ji, Y.; Chen, Z.; Cheng, Q.; Liu, R.; Li, M.; Yan, X.; Li, G.; Wang, D.; Fu, L.; Ma, Y.; et al. Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.). Plant Methods 2022, 18, 26 DOI: https://doi.org/10.1186/s13007-022-00861-7
Sunny Kumar, Apoorva Dwivedi, Yusuf Perwej, Moazzam Haidari, Siddharth Singh, Dr. Nagarajan Gurusamy, “A Smart IoT-Image Processing System for Real-Time Skin Cancer Detection”, Journal of Neonatal Surgery (JNS), SCOPUS, ISSN: 2226-0439 (Online), Volume 14, Issue S14, Pages 823-831, April 2025, DOI: 10.52783/jns.v14.4330
Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res. 2019, 235, 142–153. DOI: https://doi.org/10.1016/j.fcr.2019.02.022
Farheen Siddiqui, Sana Rabbani, Dr. Yusuf Perwej, Hina Rabbani, Dr. Nikhat Akhtar, “Leveraging Cloud Computing, IoT and Big Data for Intelligent Infrastructure Management in Smart Cities”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 8, Pages 301 - 310, August 2025, DOI: 10.6084/m9.jetir.JETIR2508335
Anjali Yadav, Shruti Dwivedi, Anubhav Dwivedi, Ujjwal Thakur, Dr. Nikhat Akhtar, “Intelligent Disease Diagnosis: A Multi-Disease Prediction Approach Using Machine Learning”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 12, No. 3, Pages 98 -109, May 2025, DOI: 10.32628/IJSRSET251235 DOI: https://doi.org/10.32628/IJSRSET251235
Amanullah Ansari, Shrejal Singh, Dr. Nikhat Akhtar, “AI-Driven Crop Disease Detection and Management in Smart Agriculture”, International Journal of Scientific Research in Science and Technology (IJSRST), SSN: 2395-6011, Volume 12, Issue 3, Pages 309-319, May 2025, DOI: 10.32628/IJSRST2512341 DOI: https://doi.org/10.32628/IJSRST2512341
Apoorva Dwivedi, K. Manivannan, Sunny Kumar, Neha Anand, Dr. Yusuf Perwej, Rakhi Kamra, “A Real-Time Environmental Pollution Monitoring Framework Using IoT and Remote Sensing Technologies”, International Journal of Environmental Sciences (IJES), SCOPUS, ISSN: 2229-7359, Volume 11, Number 7s, Pages 1064 - 1075, June 2025 DOI: https://doi.org/10.64252/repndy27
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M. and Inman, D.J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing. 151: 107398 DOI: https://doi.org/10.1016/j.ymssp.2020.107398
Y. Perwej, Nikhat Akhtar, Devendra Agarwal, “The emerging technologies of Artificial Intelligence of Things (AIoT) current scenario, challenges, and opportunities”, Book Title “Convergence of Artificial Intelligence and Internet of Things for Industrial Automation”, SCOPUS, ISBN: 978-1-032-42844-4, CRC Press, Taylor & Francis Group, 2024 Link:https://www.taylorfrancis.com/chapters/edit/10.1201/9781003509240-1/emerging-technologiesartificial-intelligence-things-aiot-current-scenario-challenges-opportunities-yusuf-perwej-nikhatakhtar-devendra-agarwal?context=ubx&refId=537f1a8f-6a94-4439-b337-3ad3d1ce8845, DOI: 10.1201/9781003509240-1 DOI: https://doi.org/10.1201/9781003509240-1
Nevavuori, P., Narra, N. and Lipping, T. (2019). Crop yield prediction with deep convolutional neural networks. Computers and Electronics in Agriculture. 163: 104-859 DOI: https://doi.org/10.1016/j.compag.2019.104859
Paudel, D., D. Marcos, A. de Wit, H. Boogaard, and I. N. Athanasiadis. 2023. “A Weakly Supervised Framework for High-Resolution Crop Yield Forecasts.” Environmental Research Letters 18 (9): 094062. Publisher: IOP Publishing DOI: https://doi.org/10.1088/1748-9326/acf50e
W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki, “Scene labeling with LSTM recurrent neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3547–3555 DOI: https://doi.org/10.1109/CVPR.2015.7298977
N. Akhtar, Nazia Tabassum, Asif Perwej, Y. Perwej,“ Data Analytics and Visualization Using Tableau Utilitarian for COVID-19 (Coronavirus)”, Global Journal of Engineering and Technology Advances (GJETA), ISSN : 2582-5003, Volume 3, Issue 2, Pages 28-50, 2020, DOI: 10.30574/gjeta.2020.3.2.0029 DOI: https://doi.org/10.30574/gjeta.2020.3.2.0029
Mahmoud AbouGhaly, Y. Perwej, Mumdouh Mirghani Mohamed Hassan, Nikhat Akhtar, “Smart Sensors and Intelligent Systems: Applications in Engineering Monitoring” , International Journal of Intelligent Systems and Applications in Engineering, SCOPUS, ISSN: 2147- 6799, Volume 12, Issue 22s, Pages 720–727, July 2024
Anmol Chauhan, Ms. Sana Rabbani, Devendra Agarwal, Nikhat Akhtar, Yusuf Perwej, “Diffusion Dynamics Applied with Novel Methodologies”, International Journal of Innovative Research in Computer Science and Technology (IJIRCST), ISSN (Online): 2347-5552, Volume-12, Issue-4, Pages 52 - 58, July 2024, DOI: 10.55524/ijircst.2024.12.4.9 DOI: https://doi.org/10.55524/ijircst.2024.12.4.9
M. Claverie, L. Nisini, S. Janssen, S. Osinga, and I. N. Athanasiadis. 2022. “Machine Learning for Regional Crop Yield Forecasting in Europe.” Field Crops Research 276:108377 DOI: https://doi.org/10.1016/j.fcr.2021.108377
Ozaki, V. A., S. K. Ghosh, B. K. Goodwin, and R. Shirota. 2008. “Spatio-Temporal Modeling of Agricultural Yield Data with an Application to Pricing Crop Insurance Contracts.” American Journal of Agricultural Economics 90 (4): 951–961 DOI: https://doi.org/10.1111/j.1467-8276.2008.01153.x
KDV Prasad, Yusuf Perwej, E. Nageswara Rao, Himanshu Bhaidas Patel, “IoT Devices for Agricultural to Improve Food and Farming Technology”, Journal of Survey in Fisheries Sciences (JSFS), ISSN: 2368-7487, SCOPUS, Volume 10, No. 1S (2023): Special Issue 1, Pages 4054-4069, Canada, 2023
K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A search space odyssey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2017 DOI: https://doi.org/10.1109/TNNLS.2016.2582924
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Computer Science, Engineering and Information Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.